Predictions
ID
Lang
Model name
Repository
Description
274
Prophet model with PCA and vaiance threshold
predict for 2025 of the Prophet model in PR
273
Prophet model with PCA and vaiance threshold
predict for 2025 of the Prophet model in GO
272
Prophet model with PCA and vaiance threshold
predict for 2025 of the Prophet model in MG
271
Prophet model with PCA and vaiance threshold
predict for 2025 of the Prophet model in CE
270
Prophet model with PCA and vaiance threshold
predict for 2025 of the Prophet model in AM
269
Model 2 - Weekly and yearly (rw1) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one follows a RW(1) process.
268
Model 2 - Weekly and yearly (rw1) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one follows a RW(1) process.
267
Model 2 - Weekly and yearly (rw1) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one follows a RW(1) process.
266
Model 2 - Weekly and yearly (rw1) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one follows a RW(1) process.
265
Model 2 - Weekly and yearly (rw1) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one follows a RW(1) process.
264
Model 2 - Weekly and yearly (rw1) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one follows a RW(1) process.
263
Model 2 - Weekly and yearly (rw1) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one follows a RW(1) process.
262
Model 2 - Weekly and yearly (rw1) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one follows a RW(1) process.
261
Model 2 - Weekly and yearly (rw1) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one follows a RW(1) process.
260
Model 2 - Weekly and yearly (rw1) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one follows a RW(1) process.
259
Model 1 - Weekly and yearly (iid) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.
258
Model 1 - Weekly and yearly (iid) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.
257
Model 1 - Weekly and yearly (iid) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.
256
Model 1 - Weekly and yearly (iid) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.
255
Model 1 - Weekly and yearly (iid) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.
254
Model 1 - Weekly and yearly (iid) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.
253
Model 1 - Weekly and yearly (iid) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.
252
Model 1 - Weekly and yearly (iid) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.
251
Model 1 - Weekly and yearly (iid) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.
250
Model 1 - Weekly and yearly (iid) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.
249
Model 1 - Weekly and yearly (iid) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.
248
Model 1 - Weekly and yearly (iid) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.
247
Model 1 - Weekly and yearly (iid) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.
246
Model 1 - Weekly and yearly (iid) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.
245
Model 1 - Weekly and yearly (iid) components
The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.
229
LSTM model for Infodengue Sprint
Predictions for 2024 in MG using the baseline architecture
228
LSTM model for Infodengue Sprint
Predictions for 2023 in MG using the baseline architecture
227
LSTM model for Infodengue Sprint
Predictions for 2024 in PR using the baseline architecture
226
LSTM model for Infodengue Sprint
Predictions for 2023 in PR using the baseline architecture
225
LSTM model for Infodengue Sprint
Predictions for 2024 in CE using the baseline_msle architecture
224
LSTM model for Infodengue Sprint
Predictions for 2023 in CE using the baseline_msle architecture
223
LSTM model for Infodengue Sprint
Predictions for 2024 in GO using the att_3 architecture
700 predictions
https://api.mosqlimate.org/api/registry/predictions/?page=12&per_page=50&
Page 12 of 14