Predictions


ID

Lang

Model name

Author

Repository

Predict date Type Model ID

Description

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task1_ES.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task3_RN.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task3_DF.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task1_DF.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task1_MG.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task2_RN.csv

CNNLSTM_DengueForecast_Cases_Climate_Data_Driven_Ensemble

2025-08-03 Model 145

Validation test 2 in AL

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task1_RJ.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task1_MA.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task3_SP.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task2_RJ.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task3_MS.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task3_RJ.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task2_PI.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task1_PA.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task1_RS.csv

Ensemble_top_5

2025-10-14 Model 159

2026 forecasts in CE

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task2_PR.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task1_MS.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task2_AC.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task3_MA.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task2_MA.csv

Arima model (3 weeks ahead)

2025-11-10 Model 160

Prediction 3 weeks ahead using data up to epiweek 202527

UERJ-SARIMAX-2025-2

2025-08-22 Model 157

Validation test 2 for UF=RR (UERJ-SARIMAX-2025-2)

CNNLSTM_DengueForecast_Cases_Climate_Data_Driven_Ensemble

2025-08-03 Model 145

Validation test 1 in AL

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task1_MT.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task3_ES.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task1_PI.csv

KAUST GeoHealth Model

2025-08-07 Model 141

pred_task2_CE.csv

186

Model 1 - Weekly and yearly (iid) components

2024-08-15 Model 27

The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.

3054 predictions

https://api.mosqlimate.org/api/registry/predictions/?page=43&per_page=30&


Page 43 of 102

Chat
chatbot