Predictions


ID

Lang

Model name

Author

Repository

Predict date Type Model ID

Description

LSTM-RF model

2025-07-31 Model 137

LSTM-RF predictions for Mosqlimate Sprint 2025

LaCiD/UFRN

2025-07-30 Model 131

Dengue predictions for MA using Validation Test 2

LNCC-CLiDENGO-2025-1

2025-08-14 Model 152

Validation test 3 for UF=CE (LNCC-CLiDENGO model)

LSTM-RF model

2025-07-31 Model 137

LSTM-RF predictions for Mosqlimate Sprint 2025

2025 sprint test - Sarima

2025-07-22 Model 108

2025 - Sarima - Preditores da picada

LNCC-CLiDENGO-2025-1

2025-10-02 Model 152

Forecast for UF=MS (LNCC-CLiDENGO model)

Cornell PEH - NegBinom Baseline model

2025-07-29 Model 139

Validation 1 (NegBinom Baseline model)

ISI_Dengue_Model

2025-08-21 Model 134

2024-25 Dengue Forecast for Rio de Janeiro

LaCiD/UFRN

2025-07-30 Model 131

Dengue predictions for GO using Validation Test 2

LaCiD/UFRN

2025-07-30 Model 131

Dengue predictions for TO using Validation Test 3

936

2025 sprint test - Sarima

2025-07-22 Model 108

2025 - Sarima - Preditores da picada

TSMixer ZKI-PH4 - sprint 2025

2025-07-31 Model 138

pred_task1_CE_corrected_dates

997

2025 sprint test - Sarima

2025-07-22 Model 108

2025 - Sarima - Preditores da picada

TSMixer ZKI-PH4 - sprint 2025

2025-07-31 Model 138

pred_task2_PB_corrected_dates

346

LSTM model for Infodengue Sprint

2024-08-28 Model 21

Predictions for 2025 in GO using the att_3 architecture

Cornell PEH - NegBinom Baseline model

2025-07-29 Model 139

Validation 2 (NegBinom Baseline model)

Chronos-Bolt

2025-07-31 Model 133

Validation set 1 for AP using Chronos-Bolt

967

2025 sprint test - Sarima

2025-07-22 Model 108

2025 - Sarima - Preditores da picada

Imperial-TFT Model

2025-07-31 Model 136

TFT forecasts for CE

LSTM-RF model

2025-07-31 Model 137

LSTM-RF predictions for Mosqlimate Sprint 2025

260

Model 2 - Weekly and yearly (rw1) components

2024-08-15 Model 28

The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one follows a RW(1) process.

Imperial-TFT Model

2025-07-31 Model 136

TFT forecasts for AP

Chronos-Bolt

2025-07-31 Model 133

Validation set 3 for AP using Chronos-Bolt

Chronos-Bolt

2025-07-31 Model 133

Validation set 3 for GO using Chronos-Bolt

966

2025 sprint test - Sarima

2025-07-22 Model 108

2025 - Sarima - Preditores da picada

Imperial-TFT Model

2025-07-31 Model 136

TFT forecasts for AP

747

Model 2 - Weekly and yearly (rw1) components

2024-09-11 Model 28

This upload represents the epidemic prediction for validation test 2 in the state PB.

LSTM-RF model

2025-07-31 Model 137

LSTM-RF predictions for Mosqlimate Sprint 2025

LNCC-CLiDENGO-2025-1

2025-08-14 Model 152

Validation test 3 for UF=BA (LNCC-CLiDENGO model)

749

Model 2 - Weekly and yearly (rw1) components

2024-09-11 Model 28

This upload represents the epidemic prediction for validation test 2 in the state PI.

3054 predictions

https://api.mosqlimate.org/api/registry/predictions/?page=93&per_page=30&


Page 93 of 102

Chat
chatbot