Previsões


ID

Idioma

Nome do modelo

Autor

Repositório

Data da previsão Tipo ID do Modelo

Descrição

31

Deep learning model using BI-LSTM Layers

2023-09-12 Model 6

Forecast de novos casos para o geocode 2211001 entre 2022-01-01 e 2023-01-01 usando apenas os dados do geocode 2211001

29

Deep learning model using BI-LSTM Layers

2023-09-12 Model 6

Forecast de novos casos para o geocode 2927408 entre 2022-01-01 e 2023-01-01 usando apenas os dados do geocode 2927408

493

LSTM model for Infodengue Sprint

2024-09-02 Model 21

Predictions for 2024 in PA using the comb_att_n architecture

498

LSTM model for Infodengue Sprint

2024-09-02 Model 21

Predictions for 2024 in PI using the baseline architecture

500

LSTM model for Infodengue Sprint

2024-09-02 Model 21

Predictions for 2024 in RN using the baseline architecture

479

LSTM model for Infodengue Sprint

2024-09-02 Model 21

Predictions for 2024 in TO using the baseline architecture

452

BB-M

2024-09-02 Model 30

Prediction for RS in 2024 (train 2)

37

Deep learning model using BI-LSTM Layers

2023-09-12 Model 6

Forecast de novos casos para o geocode 2704302 entre 2022-01-01 e 2023-01-01 usando apenas os dados do geocode e das cidades clusterizadas com ele

461

LSTM model for Infodengue Sprint

2024-09-02 Model 21

Predictions for 2023 in AL using the baseline architecture

39

Deep learning model using BI-LSTM Layers

2023-09-12 Model 6

Forecast de novos casos para o geocode 2111300 entre 2022-01-01 e 2023-01-01 usando apenas os dados do geocode e das cidades clusterizadas com ele

476

LSTM model for Infodengue Sprint

2024-09-02 Model 21

Predictions for 2023 in PI using the baseline architecture

20

Random Forest model with uncertainty computed with conformal prediction

2023-09-14 Model 5

Forecast de novos casos para o geocode 2927408 entre 2022-01-01 e 2023-01-01 usando apenas os dados de 2927408 como input

428

BB-M

2024-09-02 Model 30

Prediction for RO in 2023 (train 1)

15

Random Forest model with uncertainty computed with conformal prediction

2023-09-14 Model 5

Forecast de novos casos para o geocode 2408102 entre 2022-01-01 e 2023-01-01 usando apenas os dados de todos as cidades clusterizadas com 2408102 como input

11

Random Forest model with uncertainty computed with conformal prediction

2023-09-14 Model 5

Forecast de novos casos para o geocode 2927408 entre 2022-01-01 e 2023-01-01 usando apenas os dados de todos as cidades clusterizadas com 2927408 como input

18

Random Forest model with uncertainty computed with conformal prediction

2023-09-14 Model 5

Forecast de novos casos para o geocode 2611606 entre 2022-01-01 e 2023-01-01 usando apenas os dados de todos as cidades clusterizadas com 2611606 como input

43

Deep learning model using BI-LSTM Layers

2023-09-12 Model 6

Forecast de novos casos para o geocode 2304400 entre 2022-01-01 e 2023-01-01 usando apenas os dados do geocode e das cidades clusterizadas com ele

76

Example of Univariate neural prophet model

2023-12-06 Model 9

Example Forecast of new cases for 3304557 (Rio de Janeiro) between 2022-01-01 and 2023-07-02

26

Random Forest model with uncertainty computed with conformal prediction

2023-09-14 Model 5

Forecast de novos casos para o geocode 2507507 entre 2022-01-01 e 2023-01-01 usando apenas os dados de 2507507 como input

70

Univariate neural prophet model

2023-12-04 Model 7

Forecast de novos casos para o geocode 2304400 entre 2022-01-01 e 2023-07-02

472

LSTM model for Infodengue Sprint

2024-09-02 Model 21

Predictions for 2023 in DF using the att_3 architecture

17

Random Forest model with uncertainty computed with conformal prediction

2023-09-14 Model 5

Forecast de novos casos para o geocode 2507507 entre 2022-01-01 e 2023-01-01 usando apenas os dados de todos as cidades clusterizadas com 2507507 como input

254

Model 1 - Weekly and yearly (iid) components

2024-08-15 Model 27

The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.

439

BB-M

2024-09-02 Model 30

Prediction for DF in 2024 (train 2)

27

Random Forest model with uncertainty computed with conformal prediction

2023-09-14 Model 5

Forecast de novos casos para o geocode 2611606 entre 2022-01-01 e 2023-01-01 usando apenas os dados de 2611606 como input

73

Univariate neural prophet model

2023-12-04 Model 7

Forecast de novos casos para o geocode 3106200 entre 2022-01-01 e 2023-07-02

72

Univariate neural prophet model

2023-12-04 Model 7

Forecast de novos casos para o geocode 2611606 entre 2022-01-01 e 2023-07-02

427

BB-M

2024-09-02 Model 30

Prediction for RN in 2023 (train 1)

78

Deep learning model using BI-LSTM Layers

2023-09-12 Model 6

Forecast de novos casos para o geocode 3304557 entre 2022-01-01 e 2023-01-01 usando os dados do geocode e das cidades clusterizadas com ele

71

Univariate neural prophet model

2023-12-04 Model 7

Forecast de novos casos para o geocode 2507507 entre 2022-01-01 e 2023-07-02

700 previsões

https://api.mosqlimate.org/api/registry/predictions/?page=17&per_page=30&


Página 17 de 24