Previsões


ID

Idioma

Nome do modelo

Autor

Repositório

Data da previsão Tipo ID do Modelo

Descrição

74

Random Forest model with uncertainty computed with conformal prediction

2023-09-14 Model 5

Forecast de novos casos para o geocode 3106200 entre 2022-01-01 e 2023-01-01 usando apenas os dados de todos as cidades clusterizadas com 3106200 como input

75

Deep learning model using BI-LSTM Layers

2023-09-12 Model 6

Forecast de novos casos para o geocode 3106200 entre 2022-01-01 e 2023-01-01 usando apenas os dados do geocode e das cidades clusterizadas com ele

45

Deep learning model using BI-LSTM Layers

2023-09-12 Model 6

Forecast de novos casos para o geocode 2611606 entre 2022-01-01 e 2023-01-01 usando apenas os dados do geocode e das cidades clusterizadas com ele

128

Temp-SPI Interaction Model

2024-08-14 Model 22

Validation test 2 for three-way interaction model (AC)

189

Model 1 - Weekly and yearly (iid) components

2024-08-15 Model 27

The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.

38

Deep learning model using BI-LSTM Layers

2023-09-12 Model 6

Forecast de novos casos para o geocode 2927408 entre 2022-01-01 e 2023-01-01 usando apenas os dados do geocode e das cidades clusterizadas com ele

110

Temp-SPI Interaction Model

2024-08-14 Model 22

Validation test 1 for three-way interaction model (MA)

133

Temp-SPI Interaction Model

2024-08-14 Model 22

Validation test 2 for three-way interaction model (CE)

451

BB-M

2024-09-02 Model 30

Prediction for RR in 2024 (train 2)

426

BB-M

2024-09-02 Model 30

Prediction for RJ in 2023 (train 1)

188

Model 1 - Weekly and yearly (iid) components

2024-08-15 Model 27

The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.

22

Random Forest model with uncertainty computed with conformal prediction

2023-09-14 Model 5

Forecast de novos casos para o geocode 2211001 entre 2022-01-01 e 2023-01-01 usando apenas os dados de 2211001 como input

44

Deep learning model using BI-LSTM Layers

2023-09-12 Model 6

Forecast de novos casos para o geocode 2507507 entre 2022-01-01 e 2023-01-01 usando apenas os dados do geocode e das cidades clusterizadas com ele

34

Deep learning model using BI-LSTM Layers

2023-09-12 Model 6

Forecast de novos casos para o geocode 2304400 entre 2022-01-01 e 2023-01-01 usando apenas os dados do geocode 2304400

481

LSTM model for Infodengue Sprint

2024-09-02 Model 21

Predictions for 2024 in MA using the baseline architecture

491

LSTM model for Infodengue Sprint

2024-09-02 Model 21

Predictions for 2024 in RR using the comb_att_n architecture

482

LSTM model for Infodengue Sprint

2024-09-02 Model 21

Predictions for 2024 in BA using the baseline architecture

438

BB-M

2024-09-02 Model 30

Prediction for BA in 2024 (train 2)

487

LSTM model for Infodengue Sprint

2024-09-02 Model 21

Predictions for 2024 in SC using the baseline architecture

469

LSTM model for Infodengue Sprint

2024-09-02 Model 21

Predictions for 2023 in RR using the comb_att_n architecture

102

Temp-SPI Interaction Model

2024-08-14 Model 22

Validation test 1 for three-way interaction model (AL)

32

Deep learning model using BI-LSTM Layers

2023-09-12 Model 6

Forecast de novos casos para o geocode 2800308 entre 2022-01-01 e 2023-01-01 usando apenas os dados do geocode 2800308

36

Deep learning model using BI-LSTM Layers

2023-09-12 Model 6

Forecast de novos casos para o geocode 2611606 entre 2022-01-01 e 2023-01-01 usando apenas os dados do geocode 2611606

253

Model 1 - Weekly and yearly (iid) components

2024-08-15 Model 27

The model is founded on a structural decomposition designed for modeling counting series, employing a Poisson distribution. The log intensity is defined by the sum of weekly and yearly components, where the first one is defined as a AR(1) process and the last one is assumed to be iid.

437

BB-M

2024-09-02 Model 30

Prediction for AP in 2024 (train 2)

149

Temp-SPI Interaction Model

2024-08-14 Model 22

Validation test 2 for three-way interaction model (RR)

28

Deep learning model using BI-LSTM Layers

2023-09-12 Model 6

Forecast de novos casos para o geocode 2704302 entre 2022-01-01 e 2023-01-01 usando apenas os dados do geocode 2704302

475

LSTM model for Infodengue Sprint

2024-09-02 Model 21

Predictions for 2023 in PB using the baseline architecture

425

BB-M

2024-09-02 Model 30

Prediction for PI in 2023 (train 1)

468

LSTM model for Infodengue Sprint

2024-09-02 Model 21

Predictions for 2023 in AC using the comb_att_n architecture

700 previsões

https://api.mosqlimate.org/api/registry/predictions/?page=18&per_page=30&


Página 18 de 24